
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 13, NO. 3, SEPTEMBER 2012 1125

A Queueing Model Based Intelligent
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Abstract—Automatic machines are increasingly being used to
help drivers automatically complete tasks; however, the high error
rate of automatic machines limits how they might reduce driver
task load. Therefore, allocating tasks between human and machine
becomes an important question in system design. Existing methods
of task allocation do not consider several natural characteristics
of human–machine systems simultaneously, including speed–error
tradeoff, cognitive modeling of workload, multicriteria decision
modeling, dynamic allocation, and global optimum. In this paper,
a queueing model-based intelligent task allocator (QM-ITA) that
covers the criteria above and optimally allocates tasks between
a human operator and an automatic machine is developed. The
optimal task allocation algorithm is described in four scenarios
that demonstrate how QM-ITA is able to minimize the workload
of human operator, minimize system error rate, propose a max-
imum acceptable error rate of an automatic machine, determine
if an automatic machine is necessary for a system, and suggest
a maximum acceptable task arrival rate. Further development
of the model and the prospects for future research are also
discussed.

Index Terms—Cognitive model, human error rates, human
workload, queueing model, task allocation and allocator, task
assignment.

I. INTRODUCTION

INCREASED use of systems and devices in automobiles
requires drivers to respond to an incrementally increasing

amount of electronic information. For emergency drivers, this
means that they are required to process a growing amount
of in-vehicle information. The development of automatic ma-
chines (e.g., voice recognition, image recognition, and other
techniques in artificial intelligence) presents an opportunity
that related tasks can be handled by automatic machines,
thereby lessening driver process demands. This situation raises
an important research question for consideration: How do we
distribute or allocate the tasks between a human operator and
an automatic machine?
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Quantitative methods and approaches in task allocation have
been proposed in the previous studies. Fitts [1] first proposed an
innovative list of statements including their descriptions about
whether a human or a machine performs a certain function
better [1], [2]. Recently, de Winter and Dodou [2] reviewed
and summarized more than 40 studies of function and task
allocation based on Fitts’ original work. Although Fitts’ list
was criticized by other researchers (e.g., Jordan [3]), it is still
an adequate approximation that captures the most important
regularity of automation [2].

As technology advanced, studies using quantitative methods
in task allocation are developed. These studies, summarized in
Table I, can be categorized into five groups: 1) rating evalu-
ation; 2) statistical decision theory; 3) network optimization;
4) dynamic allocation; and 5) queueing theory. Table I also
demonstrates the criteria to assess those quantitative methods,
which include the speed–error tradeoff, use of cognitive model,
multicriteria decision, dynamic allocation, and global optimum.
All these criteria came from the nature of human–machine sys-
tems. 1) One of the important information processing character-
istics of human being is the speed–error tradeoff: When human
operators have less time to respond to a task, they usually make
more errors (e.g., [6] and [55]–[57]). A good task allocation
algorithm should consider this important feature of human
information processing (A. Speed–error tradeoff criteria). 2) In
dynamic task situations with the task arrival rate changing very
frequently, a good task allocation should be able to allocate
these tasks in real time (B. Dynamic allocation criteria). If a task
allocation method takes a relatively long time to calculate the
allocation results by another human (e.g., workload rating [7]),
it may slow down the responses of the whole human–machine
system. 3) If a task allocation algorithm does not estimate the
human workload, it may assign lots of jobs/tasks to the human
operator, which may eventually overload the operator. To rela-
tively and accurately estimate human workload, a quantitative
cognitive model (e.g., [6]) is needed to estimate the workload
(C. Usage of cognitive model criteria). 4) Unlike usage of
heuristic methods in optimization (cannot guarantee the optimal
solution is global, called local optimum) used by other task
allocation methods, a good allocation method should be able to
obtain the best allocation strategy/results in all possible cases
(D. Global optimum criteria). 5) In many practical situations,
usually human operators are already occupied by a primary
task, and any additional information loaded on the operators
may affect their performance and safety in performing the pri-
mary task (e.g., single modality in the multiple resource theory
[6] and empirical results in [5]); therefore, the workload of sec-
ondary task(s) should be minimized (Criterion E1). In reality,
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TABLE I
QUANTITATIVE TASK ALLOCATION METHODS

it is very difficult to find an error-free human–machine system,
and error may cause accidents and other severe problems in the
system; thus, the human–machine system’s error rate should
also be minimized (Criterion E2). Moreover, it is very hard
for an automatic machine to reach 100% accuracy, particularly
for image/voice recognition systems; thus, there is a criterion
of maximum acceptable error rate for the automatic machine
(Criterion E3). In addition, the arrival rate of information can-
not be infinite, and it has its maximum level to avoid overload-
ing the system (Criterion E4). Overall, a good task allocation
algorithm should consider all of these criteria (E1-E4) above
imbedded naturally in human–machine systems to maximize
or minimize the corresponding indexes (e.g., workload, error
rates, etc.) (E. Multiple-criteria decision).

Rating evaluation is the first and most intuitive approach
used to determine the allocation strategy through quantifying
and comparing the performance of human and automatic ma-
chines. Williams [7] proposed a workload rating method for the
evaluation of multiple operators. Tanish [8] provided subjec-
tive ratings sensitive to individual difference with job process
charts. Finally, Papantonopoulos and Salvendy [9] applied an
evaluation matrix to the analytical cognitive task allocation.

Statistical decision theory refers to statistical methods that
facilitate decision by the operators to respond to (or to ignore)
automated alerts and warnings. While evaluating the sensitivity
of an automated machine, signal detection theory and fuzzy
signal detection theory determined the threshold between true
alarm rates and reduce false alarm rates [10], [11]. Similarly,
Parasuraman [12] applied Bayesian analysis to determine the
decision threshold and maximize the probability of a true
alarm. The expected value analysis proposed by Sheridan and
Parasuraman [13] compared the expected value for either hu-
man or automated control in decision making.

Shoval et al. [14] proposed an optimal task allocation and
information transfer strategy based on network optimization.
This method mapped tasks onto a task agent control space with

network optimization techniques, finding the optimal path with
the lowest flow value calculated from the weight and capacity
matrices.

One further development of the task allocation is the concept
of dynamic/adaptive task allocation. The basic principle of
dynamic task allocation is that altering the allocation must be
contextual and fit within “situation dependent” [15] or “flexible
and adaptive allocation” situations [16]. Debernard et al. [45]
validated workload-based task allocation mainly for task alloca-
tions between air-traffic controller and an artificial intelligence
system, which considered workload while ignoring other im-
portant indexes of a system (e.g., the error rate).

Rouse [17] developed a queueing model of pilot deci-
sion making, where an allocation strategy of decision-making
responsibilities between pilot and computer regulated task
frequencies to improve system performance. Rencken and
Durrant-Whyte [20] constructed a queueing model that pre-
dicted the task arrival rates and service rates for human and
computer performance. The optimal allocation decision is made
through dynamic programming algorithms based on system
performance and human behavior.

However, as shown in Table I, few existing task allocation
methods meet all of these five criteria simultaneously. In this
paper, a queueing model-based task allocation algorithm is
proposed, which addresses these criteria and finds optimal al-
location strategies. Specifically, the objectives of this paper are
to describe the characteristics and development of the queueing
model-based intelligent task allocator (QM-ITA) and present its
results in a case study. In the following sections of this paper,
Section II represents a description of the general structure
of the intelligent task allocator (QM-ITA), followed by the
mathematical development of a queueing model. Section III
illustrates the results and the application of QM-ITA referring to
a case study. Finally, Section IV summarizes the major results
of the current work and its applications and the limitations of
the current research.
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Fig. 1. QM-ITA.

II. QUEUEING MODEL-BASED INTELLIGENT

TASK ALLOCATOR

A. Overview

QM-ITA and other related components in the human–
machine system are presented in Fig. 1. Tasks from in-vehicle
system (see the big dots in Fig. 1) proceed to QM-ITA. Based
on the optimal allocation strategies in QM-ITA, the tasks are
allocated between a human operator and an automatic machine
(see the solid line as task flow in Fig. 1). The human operator
and the automatic machine process the tasks and send responses
to the in-vehicle system (see the two “response” dashed in-
formation flows from human operator to the in-vehicle system
and from automatic machine to the in-vehicle system in Fig. 1,
respectively). Information about the human operator (e.g., the
processing speed of an ongoing task) and task information from
the in-vehicle system (e.g., arrival rate of the information) are
sent to QM-ITA so that QM-ITA is able to allocate the tasks
optimally (See the dashed lines as information flow from human
operator to QM-ITA and information flow from the in-vehicle
system to QM-ITA in Fig. 1, respectively).

QM-ITA is composed of a set of mathematical equations that
can quantify the allocation of the tasks (called allocation or
routing strategy qj). The following sections introduce how the
allocation strategies are mathematically obtained.

B. Mathematical Model Formulation and Derivation
of QM-ITA

The objective of the current model is to determine the optimal
allocation strategy for allocating tasks for a global optima while
satisfying all the constraints. Based on Rouse’s queueing model
of the human operator [17], the human operator is modeled as a
continuous-time Markov chain with a capacity c and a service
rate µ. The capacity of the automatic machine is assumed to be
infinite.

Let qj be the probability that a task will be assigned to the hu-
man operator given the condition that there are j tasks currently
in the human operator (j = 0, 1, . . . , c).1 For example, q2 = 1
indicates that a task is assigned to the human operator, given

1From a human factors point of view, tasks in the human operator mean tasks
being stored and processed in the working memory of the human.

Fig. 2. Transition diagram of the Markov chain.

the condition that there are two tasks currently in the human
operator. Within all conditions, qc = 0.

Let λj be the task arrival rate at the human operator given the
condition that there are j tasks currently in the human operator.
λj is calculated as

λj = λ × qj , j = 0, 1, . . . , c (1)

where λ stands for the task arrival rate of the whole system.
Essentially, the mathematical property of the Markov chain

indicates that the total flows into a state must be equal to
the total flows out of that state if a stationary state exists. A
transition diagram of the human operator would then appear as
shown in Fig. 2, where state n indicates that there are n tasks
currently in the human operator [23].

Let pj be the probability that there are j tasks in the human
operator (j = 0, 1, . . . , c). Since pj is a probability distribution,
we can have the boundary condition that

c∑
j=0

pj = 1. (2)

Equaling flow in and flow out of state n, the following
balance equation can be obtained:

λnpn + µnpn = µn+1pn+1 + λn−1pn−1. (3)

In state 0

λnpn + µnpn = µn+1pn+1 + λn−1pn−1. (4)

Combining (3) and (4), it can be determined that

pj =
j∏

i=1

(
λi−1

µi
p0

)
. (5)

By substituting qj in (2), the value of p0 can now be deter-
mined as

p0 =
1

1 +
∑c

j=1

[∏j
i=1

(
λi−1
µi

)] . (6)

Rewriting (5) by substituting po, we then have

pj =
j∏

i=1

(
λi−1

µi

)
× 1

1 +
∑c

j=1

[∏j
i=1

(
λi−1
µi

)] . (7)

The error rate of the human operator eh can be regarded as
a constant or interactive as related to the arrival rate λ [see
Appendix A for the derivation of (8)], i.e.,

eh =
0.04

0.04 + 1
λ − C

(8)
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TABLE II
OBJECTIVES, VARIABLES, AND CONSTANTS IN THE FOUR SCENARIOS

where C is the duration from the time point when the response
of the human operator completes to the time point when a task
arrives at the human operator. At this point, the system error
rate can be calculated by (see Appendix B)

e =
c∑

j=0

pj [ehqj + em(1 − qj)] . (9)

The workload of the human operator can be obtained via (see
Appendix B)

ρ =

(∑c
j=0 qjpj

)
λ

µ
. (10)

C. Calculation Simplification

Simplification of the mathematical calculation is reasonable
by assigning qj a binary value of 0 or 1. In this case, qj = 1
indicates that the task is assigned to the human operator when
there are j tasks in the human operator; qj = 0 indicates that
the task is assigned to the automatic machine when there are j
tasks in the human operator.

In (7), there is a special property of the current mathematical
model. Using (1) to substitute λj−1, (7) can be rewritten in
terms of λ and qj as

pj =
j∏

i=1

λi−1

µi
× 1

1 +
∑c

j=1

(∏j
i=1

λi−1
µi

)

=λj

j∏
i=1

qi−1

µi
× 1

1 + λj
∑c

j=1

(∏j
i=1

qi−1
µi

) . (11)

Therefore, when qj = 0, it is obvious that pj+1 = 0. At this
point, the solution space {qj} is reduced from 2c to c + 1 in the
form of {qj = 1, qk = 0|0 ≤ k ≤ c, 0 ≤ j < k}.

The optimal objective is obtained by selecting an appropriate
solution from the solution space given the relevant constraints.
Examples of these strategies are described in detail in the case
study.

D. Development of the Four Scenarios

The human–machine system model previously described are
used to address four scenarios with the following objectives
(see Table II): 1) to minimize workload given the task arrival
rate λ and an overall error rate tolerance ET ; 2) to minimize
the overall human–machine system error rate e with a given
task arrival rate λ and a human operator workload tolerance
UT ; 3) to determine the maximum acceptable error rate of the
automatic machine em with a given task arrival rate λ and

a human operator workload tolerance UT ; and 4) to identify
the maximum task arrival rate λ with given overall error rate
tolerance ET and a human operator workload tolerance UT .
The service rate of the human operator µ is regarded as a
constant since this rate is determined by a designated human
operator.

In practice, the overall error rate tolerance ET and the human
operator workload tolerance UT will be determined by the re-
quirement for a certain human–machine system and properties
of a human operator (e.g., age). For a human–machine system
with a very high demand of accuracy (e.g., detecting pedestri-
ans running across road at night), ET can be very low. UT can
be adjusted depending on the properties of the human operator.
For example, for an elder operator (age > 65 years old),
his/her UT should be lower than that of a young operator
(age from 20 to 30) [42].

Scenario 1: Determine qj (allocation strategy) so that the
human operator workload is minimized2 given the task arrival
rate λ and the overall error rate tolerance ET . The problem is
formulated as the following nonlinear program:

Minimize

ρ =

(∑c
j=0 qjpj

)
λ

µ

S.T.
c∑

j=0

pj (ehqj + em(1 = qj)) = ET

0 ≤ qj ≤ 1; em > eh; qc = 0; j = 0, 1, . . . , c

where ET is the system error rate tolerance for secondary
tasks, λ, eh, em, and ET are given constants, and eh < em.
In the case study, this scenario minimizes driver workload in
using a radar system with an automatic machine in different
arrival rates of information and overall error rate tolerances (see
Section III-C1).

Scenario 2: Determine qj (allocation strategy) so that the
overall system error rate e is minimized given the task arrival
rate λ and a human operator workload tolerance UT . The
problem is formulated as the following nonlinear program:

Minimize

e =
c∑

j=0

pj (ehqj + em(1 = qj))

S.T. ρ ≤ UT ; em > eh; qc = 0; j = 0, 1, . . . , c

where UT is the human workload tolerance; λ, eh, em, and
ET are the given constants, and eh < em. The case study

2Since workload (WL) = a ρ + b (see Appendix B and [42]) and a and b
are constants, minimizing workload (WL) is equivalent to minimizing ρ.
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described an example of this scenario to minimize the overall
system error rate when a driver is using a radar system with an
automatic machine under different driver workload tolerances
and different arrival rates of information (see Section III-C2).

Scenario 3: Determine qj (allocation strategy) so that the
maximum acceptable machine error rate em is obtained given
a task arrival rate λ and a human operator workload tolerance
UT . In this scenario, the error rate of the automatic machine
em does not need to be greater than the error rate of the
human operator eh. The problem is formulated as the following
nonlinear program:

Determine maximum

em =
ET − eh

∑c
j=0 qjpj∑c

j=o(1 = qj)pj

S.T ρ ≤ UT ; 0 ≤ qj ≤ 1; qc = 0

0 ≤ em ≤ 1; j = 0, 1, . . . , c

where ET and UT represent the tolerance of the system error
rate and human workload, respectively, and eh, ET , and UT are
given constants. In the case study, an example of this scenario
is provided to calculate the maximum acceptable machine error
rate of the automatic machine at different driver workload
tolerance levels and arrival rates of information. If the derived
maximum acceptable error rate of the machine is equal to 1,
the automatic machine is not needed in this system (see
Section III-C3).

Scenario 4: Determine qj (allocation strategy) so that the
maximum acceptable arrival rate λ can be obtained given an
overall error rate tolerance ET and a human operator workload
tolerance UT . The problem is formulated as the following
nonlinear program:

Determine maximum λ

S.T. ρ ≤ UT ; 0 ≤ qj ≤ 1; em > eh; qc = 0

e =
c∑

j=0

pj (ehqj + em(1 − qj)) ≤ ET

j = 0, 1, . . . , c

where ET and UT represent a system error rate and human
workload, respectively, and em, eh, ET , and UT are given
constants, and eh < em. In the case study, we described an
example of this scenario to estimate the maximum acceptable
information arrival rate of a radar system with an automatic ma-
chine at different driver workload tolerance levels and different
overall system error constraints (see Section III-C4).

Appendix C describes how the objective functions are solved
and the allocation strategies qj are obtained via the optimization
process in each scenario.

In addition, a conventional task allocation algorithm is in-
troduced for comparison with the optimal algorithm: a task is
assigned to the automatic machine only if the human operator
is already occupied. It is a traditional way for the automatic
machine to help the human operator process certain types of
tasks. In other words, in a conventional algorithm, one task

Fig. 3. User interface of the radar system [24].

is processed by the human operator at one time, whereas
the optimal strategy of the new algorithm presents more than
one task to the human operator, depending on the allocation
strategy.

III. INTELLIGENT TASK ALLOCATION

A. Case Study

Speeding is one of the most prevalent factors contributing
to automobile crashes, according to a report from the U.S.
National Highway Traffic Safety Administration (NHTSA).
Estimated by NHTSA, in 2004, speeding was a contributing
factor in 30% of all fatal crashes, and 13 192 lives were lost
in speeding-related crashes. Traffic law enforcement (police
officers detecting speeding and issuing speeding tickets) is one
of the most critical measures for preventing speeding [5].

Based on an informal interview with the Patrol Division
Supervisor of the Police Department of the University at Buf-
falo, it was found that one of the routine tasks for an officer
is speeding detection while steering a vehicle. The police
officer must read two numbers on a display of a radar system
mounted on the dashboard. The first number is the speed of a
target vehicle measured by the radar system, and the second
is the distance from the police vehicle to the target vehicle.
A speeding violation is determined by both the speed and the
distance. Fig. 3 illustrates the radar system and demonstrates
how the human operator (driver) responds to an incoming task.3

Each pair of numbers are tasks that are allocated either to
the human operator or to the automatic machine by QM-ITA.
In this case, the speeding detection task is either processed by
the police officer or by an automatic machine that reads two
numbers and turns on the siren automatically. It should be noted
that, in the real world, whether the police officer thinks the
vehicle is speeding depends on not only the speed and distance
but the consecutive judgment after the speeding reading from
the radar machine as well. The police officer uses his long-term
memory to judge. Moreover, because there are always a great

3For example, suppose the speed limit is 55 mi/h on a road. If the speed is
between 56 and 64 m/hr and the distance is less than 100 yd, the vehicle is
speeding, and the officer will turn on the siren; if the distance is more than
100 yd, it is judged as not speeding. Moreover, independent of the distance, if
the speed is above 65 m/hr, it is speeding, and the siren will be turned on; if the
speed is below 55 mi/h, it will not be turned on.
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number of vehicles running on multiple lanes on the road, it is
hard for the automatic machine to tell which vehicle is speeding
by just reading two numbers. Therefore, the chance that the
automatic machine makes an error to tell a vehicle is speeding
is higher than the human operator, which is consistent with our
assumption of QM-ITA.

B. Parameter Settings

All of the parameters in the models can be altered based
on the interaction of different automatic machines, tasks, and
human operators. The error rate of the human operator eh is
a variable that is relevant to the arrival rate λ. The reason to
set eh in this way is that it demonstrates existing experimental
evidences: when the number of responses in a certain duration
is increased as the arrival rates increase, Mulert et al. [25] found
that the error rates of subjects also increased. The relationship
between eh and λ is obtained (see Appendix A).

The values of the other parameters are set according
to human factor experimental studies: human service rate
µ = 0.588 tasks/sec (see details in Appendix D) and human
queuing system capacity as 7 [26]. In addition, task arrival rate
λ and c are set between 0.1 and 2.5 tasks/s and from −1 to
its own upper bound [can be obtained by (8)], respectively.
From this, the maximum value of eh can be obtained (close
to 0.09). Since it is assumed that the error rate of the automatic
machine is larger than that of the human operator, em = 0.1
is set. In addition, according to the context of each scenario,
relevant parameters can be fixed or flexible to obtain the optimal
allocation strategies.

To simplify the term of the strategies, all of the allocation
strategy numbers are coded from 1 to 7. Strategy n means that
any pending tasks are allocated to the human operator if there
are (n − 1) tasks in the human operator.

C. Results

In each scenario, first, the results of the optimal algorithm
using interactive eh are shown. Then, a comparison between
optimal and conventional algorithms is discussed. Finally, the
potential applications of the results in intelligent transportation
systems (ITS) design related to the case study are described.

1) Minimize the Human Operator Workload Given the Ar-
rival Rate and System Error Rate Constraint: Scenario 1 is
to determine qj (routing strategy) so that the human operator
workload is minimized given a task arrival rate λ and an
overall error rate tolerance ET . From Fig 4(a)–(c), the general
relationship between the workload and the task arrival rate
can be obtained. With an increase of the task arrival rate,
both the workload and the strategy number increase. This is
consistent with Bi and Salvendy [27], who found that a high
task arrival rate significantly increased the mental workload.
Similar experimental results can also be found in [28] and [29].

Taking Fig. 4(c) as an example, if the arrival rate is less than
1.1 tasks/s, the strategy number will be 1, which means that
the human operator finishes processing the current task before
the arrival of the next task. When the arrival rate increases
from 1.1 to 1.2 tasks/s, the strategy number varies from 1 to

Fig. 4. Relationship between workload and strategy number versus arrival rate
in different conditions of error rate tolerance.

Fig. 5. Workload comparison between conventional and optimal algorithms.

2 accordingly. At the same time, human workload increases
compared with lower arrival rate conditions. The mechanism
of this result is that when one more task goes into the human
operator, it is this additional task that causes a sudden change
in the workload of the human operator.

The results of the comparison are shown in Fig. 5: given
strategy 1, the optimal algorithm is identical to the conventional
one. However, the optimal algorithm works with a larger range
of task arrival rates than the conventional algorithm.

In the police officer’s routine, this optimal algorithm can
be applied if he/she is busy with another task. Based on our
interview with police officers, besides speeding detection task,
a police officer usually handles other tasks while driving (e.g.,
communicating with dispatch center/other police cars through
radio). When QM-ITA is applied, it assigns speeding detection
tasks to the automatic machine to minimize the police officers’
workload in these multitasking situations.

2) Minimize Overall System Error Rate Given the Human
Operator Workload Tolerance and Arrival Rate: Scenario 2
is to determine qj so that the overall system error rate e is
minimized given the task arrival rate λ and workload tolerance
UT . Fig. 6 shows that with an increase of arrival rate in
general, the overall system error rate increases while the strat-
egy number decreases. This is consistent with existing human
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Fig. 6. Relationship between error rate and strategy number versus arrival rate
in different conditions of workload tolerance.

Fig. 7. Error rate comparison between conventional and optimal algorithms.

factor studies that show that the error rates of human–machine
systems increased when the task arrival rate was relatively high
[25], [30], [58].

A comparison between the two algorithms is presented in
Fig. 7. At lower arrival rates, the system error rates of optimal
algorithm are less than that of the conventional algorithm.

The optimal algorithm may potentially be applied when the
objective of the system is to minimize the overall system error
rate. In this case study, the goal of the system is to detect
speeding vehicles as accurate as possible. Since the error rate
of the human operator is lower than that of the automatic
machine, QM-ITA would assign more tasks to the police officer
so that the overall system error rate would be minimized, and
the system is able to perform the speeding detection task more
accurately. In addition, results of the overall system error from
QM-ITA can be used to estimate and predict the error rate of
the whole human–machine system given different information
processing demands (i.e., arrival rate).

3) Maximum Acceptable Machine Error Rate Given the
Human Operator Workload Constraint and Arrival Rate: This
scenario is to determine qj (routing strategy) so that the maxi-
mum acceptable em is obtained, given workload tolerance UT

Fig. 8. Relationship between maximum acceptable Em and strategy number
versus arrival rate in different conditions of workload tolerance.

and task arrival rate λ values. Fig. 8 shows the results of the
maximum acceptable machine error rate (Max Em): With an
increase of arrival rate, both Max Em and strategy number
decrease. This result is consistent with existing experimental
findings that suggest that high task arrival rates lead to high
human error rates (e.g., [25] and [30] in general and [51] in
driving4). Since QM-ITA captures the speed–error tradeoff of
human, when the task arrival rate increases, the human error
rate eh increases, which produces higher requirements (lower
Max Em) on the automatic machine.

On the other hand, when the arrival rate is low, Max Em

is equal to 1, indicating Max Em has no effect on the overall
system error rate. At this point, the human operator handles all
of the tasks, and it does not matter how large Max Em is.

The patterns of Max Em shown in Fig. 8(c) are dissimilar to
the patterns in Fig. 8(a) and (b). As the arrival rate increases,
the value of Max Em starts to decrease before the strategy
number changes, and the turning points of Max Em emerge
when the arrival rate is equal to 0.5 tasks/s. Max Em decreases
from this arrival rate point (arrival rate = 0.5 tasks/sec) since
the automatic machine attempts to process tasks. However, this
does not change the strategies due to a high workload tolerance
(UT = 0.9), which allows the human operator to process most
of the tasks.

The results of the comparison between the two algorithms are
presented in Fig. 9. In most conditions, the optimal algorithm
works better than the conventional one. When the arrival rates
are low, the human–machine system equipped with the optimal
algorithm is able to process, at most, seven tasks. Given the
same error rate tolerance, the more tasks processed by the
human operator, the larger Max Em. Therefore, the value of

4For example, when a driver is a performing a dual task (e.g., using a cellar
phone while driving, the arrival rates of information increase (driver has to
process both driving information and cellar phone’s information in cognition)
compared with a single task situation), the error rate of drivers in dual tasking
significantly increases [51].
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Fig. 9. Maximum acceptable Em comparison between conventional and
optimal algorithms.

Max Em of the optimal algorithm can be much greater than
that of the conventional algorithm.

In terms of the application of the results of QM-ITA, first,
it can help ITS designers to determine the maximum ac-
ceptable error rate of the automatic machine under different
circumstances. This maximum acceptable error rate of the
automatic machine Max Em provides a target of the ITS so
that designers can achieve it via improving programming or/and
training recognition algorithms (e.g., Em should be lower than
0.2 when the task arrival rate is over 1 task/s and human
workload tolerance is at 0.9). Second, the results can also help
ITS designers determine under which level of arrival rate an
automatic machine is needed and/or the time when an automatic
machine starts to work to help the human operator process
the coming tasks. Taking Fig. 8(c) as an example, when the
task arrival rate is lower than 0.5 tasks/s, Max Em is 1. This
indicates the following: 1) an automatic machine is needed
under situations with task arrival rate higher than 0.5 tasks/s; or
2) if an automatic machine is already installed, when the task
arrival rate is higher than 0.5 tasks/s, that machine starts work
to assist the human operator.

4) Maximum Acceptable Task Arrival Rate Given Human
Operator Workload and Overall System Error Rate Constraint:
Scenario 4 is to determine qj (routing strategy) so that the
maximum task arrival rate λ can be obtained given the system
error rate tolerance ET and the human operator workload toler-
ance UT . Fig. 10 shows the relationship between the maximum
acceptable task arrival rate and strategy number versus error
rate tolerance under different conditions of the human operator
workload tolerance.

From Fig. 10, it can be concluded that, in general, with an
increase in error rate tolerance, the maximum task arrival rate
increases while the strategy number decreases. As the workload
tolerance increases [comparing Fig. 10(c) with Fig. 10(a) and
(b)], the maximum task arrival rate increases in general. This
result is consistent with previous empirical findings in human
factors (e.g., [53] and [54]): A young operator with higher
workload tolerance would able to process more tasks than an
elder operator with lower workload tolerance in the same time
period (i.e., higher task arrival rate).

The comparison in Fig. 11 shows the following: 1) The
optimal algorithm results in a higher maximum acceptable
arrival rate than the conventional algorithm under different
conditions of workload tolerances; and 2) the optimal algorithm
can be used when the error rate tolerance is low, where the
conventional algorithm does not demonstrate a feasible solution
(e.g., the error rate tolerance is 0.01).

Fig. 10. Relationship between maximum acceptable arrival rate and strat-
egy number versus error rate tolerances in different conditions of workload
tolerances.

Fig. 11. Maximum arrival rate comparison between conventional and optimal
algorithms.

This scenario is to determine the maximum acceptable task
arrival rate. Using the case study as an example, the task arrival
rate is the amount of vehicles arriving within a certain area
where a police officer monitors. If the rate goes beyond the
maximum acceptable λ, a police officer equipped with QM-
ITA will be unable to handle all the vehicles arriving within this
area. Therefore, based on QM-ITA’s suggestion in this scenario,
he or she would either call for assistance from other police
officers or slow down the traffic in some way (e.g., make the
police vehicle visible to the traffic) so that the arrival rate of
the information to the human–machine system is reduced. For
example, if there are three vehicles every second needing to
be inspected, one police officer equipped with QM-ITA can
handle one vehicle every second based on QM-ITA’s suggestion
[e.g., in Fig. 10(c), when the system error rate tolerance is
0.07, the maximum task arrival rate is close to 1 task/s, which
means the human–machine system can process 1 vehicle per
second]. Therefore, he/she must call another two police officers
equipped with QM-ITA.

IV. DISCUSSION

QM-ITA defines and optimizes the dynamic task allocation
between human operator and automatic machine, quantifying
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the nonlinear relations between task arrival rate, overall system
error rate, error rate of the automatic machine, and human
workload. Integrating a cognitive model of mental workload,
speed–error tradeoff, and the closed-form equations with global
optimum solutions, this work may provide useful quantitative
computational results for designers of in-vehicle system to
develop corresponding algorithms. It is anticipated that the
proposed model may enhance intelligent transportation systems
by offering a useful approach to manage task allocation in a
way of dynamically allocating the tasks between the human
and automatic machine to minimize the workload of human
operator, minimize the overall system error rate, propose the
maximum acceptable error rate of automatic machine, and
suggest the maximum acceptable task arrival rate.

QM-ITA can be applied in human–machine systems to im-
prove their safety and performance. First, in many practical
situations, operators are occupied by a primary task, and ad-
ditional information loaded on the operators may affect the
performance and safety. In these situations, QM-ITA can be
used to avoid overwhelming the driver with information from
these secondary tasks (see Section III-C1). Second, in certain
human–machine systems in practice, minimizing the overall
error rate of the whole system is the most important concern
for its use [47, Sec. 3.3.2], [48, Sec. 3.3.2]. QM-ITA can be
applied to minimize this overall error rate of the whole system.
Third, in practice, on the one hand, designers may be uncertain
if an automatic machine is really needed in a human–machine
system or not. On the other hand, in the situation when an
automatic machine is needed, it is difficult for designers of
automatic machines to reach 0% error rate or improve the
accuracy of an automatic machine by 5% via the change of
programming or/and training of automatic machine. In these
situations, QM-ITA can be used to determine 1) if an automatic
machine is needed or not (e.g., if a human–machine system
works in the max Em = 1 situation, the automatic machine
may not be needed), and 2) if an automatic machine is needed,
what is its maximum acceptable error rate to reduce hardware
and software costs (see Section III-C3)? Fourth, in practice, the
information processing capacity of a human–machine system
is usually limited; if an intelligent system like QM-ITA is able
to determine the maximum arrival rate of information to be
processed by one human–machine system, it can help operators
or managers in real settings to determine how many such kind
of human–machine systems are needed (see Section III-C4).

Since the queueing model was developed in Excel Visual
Basic Application module, it can be implemented without in-
stalling advanced software environment. An optimal allocation
strategy is obtained as long as the real-time arrival rate and
workload information is received by QM-ITA, with the prepro-
grammed objective, constraints, and other system parameters.

QM-ITA can work together with the queueing network-
model human processor (QN-MHP) adaptive workload
management system (QN-MHP AWMS) [5] in driving
situations. Once QM-ITA assigns a task to the human operator,
it is processed by QN-MHP AWMS (as shown in Fig. 12), and
QN-MHP AWMS intelligently regulates the interarrival time
among these tasks and then sends them to a human operator.
Before this regulatory process, the arrival rate of some tasks

Fig. 12. QN-MHP AWMS and QM-ITA working together in a human–
machine system.

can be quite short, which may overload the human operator (see
the dots close to each other on the task flow from QM-ITA to
QN-MHP AWMS in Fig. 12). During this regulation/process,
without sacrificing the overall processing time, tasks arrive at
the human operator with a comfortable rate to reduce human
workload and error rate (see the dots on the task flow from
QN-MHP AWMS to the human operator in Fig. 12).

QM-ITA currently works under the assumption that the error
rate of the automatic machine is greater than the human oper-
ator (em > eh); however, if em < eh, QM-ITA sends all the
tasks to the automatic machine, and the human operator is no
longer needed in the system.

There are several limitations of the current work that might
be addressed in future work. In practice, the task allocations
between the human operator and the automatic machine are
complex (e.g., the human operator may play a supervisory role
in a human–machine system to monitor the machine, or the
human operator performs some relatively difficult tasks, and
these tasks are never assigned to machines). The task allocation
modeled currently represents one aspect of the theory applied
(i.e., the automatic machine can process tasks as human but
with higher error rate). To account for other aspects and situa-
tions in task allocations, new equations of the human workload
and error rates of the system need to be built. Future studies
should consider and model other possibilities of task allocations
when a machine and human operator play different roles in the
system. Although there is consistency between the current and
empirical results, as described in each scenario, all of the results
of this paper were obtained from the model’s derivation, and
they should be verified by empirical studies in the future.

APPENDIX A
ESTIMATION OF HUMAN ERROR RATE

Based on existing literatures in human factors [6], [55]–[57],
Figs. 13 and 14 show the relationship between response accu-
racy, error rate, and reaction time.

Since error rate = 1 − accuracy , we can derive the inverse
relationship between the response error rate and reaction time,
i.e., speed–error tradeoff (see Fig. 14). It is assumed that the
error rate of the human operator eh is less than the error
rate of the automatic machine em, which is eh < em, and the
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Fig. 13. Speed–accuracy tradeoff (revised from [6]).

Fig. 14. Speed–error rate tradeoff (revised from [6]).

relationship between human error rate and reaction time follows
the equation (eh ≥ 0 and RT ≥ 0)

eh =
A

A + RT
(A1)

where A is the constant of the speed–error tradeoff.
In addition

1
λ

= RT + C (A2)

where RT means reaction time of a human. An interval between
two stimuli is 1/λ, and it is also equal to the human reaction
time (RT) plus a certain rest time (C) in general.

By combining the two equations, the human error rate can be
calculated by

eh =
A

A + 1
λ − C

. (A3)

Mulert [25] reported the error rates and reaction times of
60 trials. Based on the experimental data, we are able to
determine that A = 0.04. Therefore, the speed–error tradeoff
follows the equation

eh =
0.04

0.04 + 1
λ − C

. (A4)

APPENDIX B
ESTIMATION OF HUMAN WORKLOAD

AND SYSTEM ERROR RATE

qj is defined as the probability that a task will be assigned
to the human operator, given the condition that there are j
tasks currently in the human operator, and pj is defined as the

probability that there are j tasks in the human operator of all
c states. Therefore,

∑c
j=0 qjpj is the expected probability that

tasks will be distributed to the human operator in QM-ITA for
all c states, and (

∑c
j=0 qjpj)λ is the expected number of tasks

assigned to the human operator for all c states.
Human workload of secondary tasks can be modeled by the

human operator utilization ρ, and the relationship of workload
WL and ρ is expressed as [42]

WL = aρ + b = a

(∑c
j=0 qjpj

)
λ

µ
+ b (B1)

where parameters a and b are the constants in representing the
direct proportional relationships between the averaged utiliza-
tions and the subjective responses (a > 0).

By applying basic queueing theory into the human operator,
which is treated as a whole, the utilization is able to be obtain-
ed by

ρ =

(∑c
j=0 qjpj

)
λ

µ
. (B2)

Let the error rate of the human operator be eh and the
automatic machine error rate be em, and the error rate of system
e can be quantified as follows:

e =P (e|human)P (human) + P (e|machine)P (machine)

= eh

c∑
j=0

qjpj + em

c∑
j=0

(1 − qj)pj

=
c∑

j=0

pj (ehqj + em(1 − qj)) . (B3)

APPENDIX C
DERIVATION OF THE SOLUTIONS TO

THE OPTIMAL ALGORITHM

Scenario 1 (Minimize Workload): We know that

e =
c∑

j=0

pj (ehqj + em(1 − qj))

= em

c∑
j=0

pj + (eh − em)
c∑

j=0

pjqj ≤ ET .

Since
∑c

j=0 pj = 1, we can have
c∑

j=0

pjqj ≥ em − ET

em − eh
.

Finally, the objective inequality can be obtained as

ρ =

(∑c
j=0 qjpj

)
λ

µ
≥ em − ET

em − eh

λ

µ
. (C1)

Scenario 2 (Minimize Error Rate): Since

ρ =

(∑c
j=0 qjpj

)
λ

µ
≤ UT .
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It can be obtained that

c∑
j=0

qjpj ≤ UT
µ

λ
.

Therefore

e =
c∑

j=0

pj (ehqj + em(1 − qj))

= em − (em − eh)
c∑

j=0

qjpj

≥ em − (em − eh)UT
µ

λ
. (C2)

Scenario 3 (Maximum Error Rate of Machine): We have
already known

c∑
j=0

qjpj ≤ UT
µ

λ
.

Hence

1
1 −

∑c
j=0 qjpj

≤ 1
1 − UT

µ
λ

.

Meanwhile

em =
ET − eh

∑c
j=0 qjpj∑c

j=0(1 − qj)pj

= eh +
ET − eh

1 −
∑c

j=0 qjpj

≤ eh +
ET − eh

1 − UT
µ
λ

. (C3)

Scenario 4 (Maximum Task Arrival Rate): It is known that
the workload should not exceed the constraint

ρ =

(∑c
j=0 qjpj

)
λ

µ
≤ UT .

Then

λ ≤ UT
µ(∑c

j=0 qjpj

) . (C4)

We also know that the error rate should not exceed the
constraint

c∑
j=0

pj (ehqj + em(1 − qj)) ≤ ET .

Then

1∑c
j=0 pjqj

≤ em − eh

em − ET
.

Finally, the task arrival rate is subject to (C4) and (C5)

λ =
µρ(∑c

j=0 qjpj

) ≤ UT µ
em − eh

em − ET
. (C5)

APPENDIX D
ESTIMATION OF HUMAN SERVICE RATE

IN THE CASE STUDY

The estimation of the service rate of the human operator
can be obtained by estimating the processing time. First, the
human operator receives visual information from the system en-
vironment (information perception). The human operator then
makes his/her decision based on the visual stimuli (decision
making). Responses to stimuli are then sent back to the system
environment (response execution).

In [5] and [43], the experimental results of processing time
of two secondary tasks, which are speeding detection task and
the radio message response task are reported. Based on there
results, we are able to estimate the processing time of the
speeding detection task.

Information Reception: An existing study [43] estimated
that the processing time of visual radar reading is 676 ms. In
addition, the processing time of auditory hearing is estimated
as 300 ms.

Decision Making and Response Execution: The experimen-
tal results of the processing time of secondary tasks are obtained
by previous work [5], [43], which is 3 s. An existing study
[44] found that the processing times of decision making and re-
sponse execution of auditory-manual response task and visual-
manual response task are the same. At this point, letting T be
the processing time of decision making and response execution
of the visual-manual response task, we have 300 + T + 676 +
T = 3000 ms. Solving the equation, T = 1012 ms. We can
obtain the processing time of visual-manual response, which is
676 + 1012 = 1688 ms. Round it up to 1.7 s. Therefore, the ser-
vice rate of the human operator µ = (1/1.7) ∼= 0.588 tasks/s.
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